RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis
نویسندگان
چکیده
The expression of Beta, the single-stranded annealing protein (SSAP) of bacteriophage lambda in Escherichia coli promotes high levels of oligonucleotide (oligo)-mediated mutagenesis and offers a quick way to create single or multiple base pair insertions, deletions, or substitutions in the bacterial chromosome. High rates of mutagenesis can be obtained by the use of mismatch repair (MMR)-resistant mismatches or MMR-deficient hosts, which allow for the isolation of unselected mutations. It has recently become clear that many bacteria can be mutagenized with oligos in the absence of any SSAP expression, albeit at a much lower frequency. Studies have shown that inactivation or inhibition of single-stranded DNA (ssDNA) exonucleases in vivo increases the rate of SSAP-independent oligo-mediated mutagenesis. These results suggest that lambda Beta, in addition to its role in annealing the oligo to ssDNA regions of the replication fork, promotes high rates of oligo-mediated mutagenesis by protecting the oligo from destruction by host ssDNA exonucleases.
منابع مشابه
The search for DNA homology does not limit stable homologous pairing promoted by RecA protein
BACKGROUND The basic molecular mechanisms that govern the search for DNA homology and subsequent homologous pairing during genetic recombination are not understood. RecA is the central homologous recombination protein of Escherichia coli; because several RecA homologues have been identified in eukaryotic cells, it is likely that the mechanisms employed by RecA are conserved throughout evolution...
متن کاملRecA Protein
The RecA protein of Escherichia coli is the prototypic deoxyribonucleic acid (DNA) strand exchange protein. It assembles on single-stranded DNA to form a helical nucleoprotein filament that is the active species for all RecA protein-dependent functions. This protein– DNA complex is responsible for three mutually exclusive functions: DNA recombination, induction of the DNA-damage SOS response an...
متن کاملBacillus subtilis RecU Holliday-junction resolvase modulates RecA activities
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. Howev...
متن کاملDirected Assembly of 3-nm-long RecA Nucleoprotein Filaments on Double-Stranded DNA with Nanometer Resolution
Protein-mediated self-assembly is arguably one of the most promising routes for building complex molecular nanostructures. Here, we report a molecular self-assembly technique that allows programmable, site-specific patterning of double-stranded DNA scaffolds, at a single-base resolution, by 3-nm-long RecA-based nucleoprotein filaments. RecA proteins bind to single-stranded DNA to form nucleopro...
متن کاملUVM, an ultraviolet-inducible RecA-independent mutagenic phenomenon in Escherichia coli.
Most mutagenic DNA lesions are noninstructive in the sense that template instruction is either missing or inaccessible during DNA replication, leading to replication arrest. According to the SOS hypothesis, arrested replication induces the expression of SOS factors that force replication past stalled sites at the cost of mutagenesis. We have recently shown that prior UV irradiation of delta rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010